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The concept of fidelity has been introduced to characterize the stability of a quantum-mechanical system
against perturbations. The fidelity amplitude is defined as the overlap integral of a wave packet with itself after
the development forth and back under the influence of two slightly different Hamiltonians. It was shown by
Prosen and Žnidarič in the linear-response approximation that the decay of the fidelity is frozen if the Hamil-
tonian of the perturbation contains off-diagonal elements only. In the present work the results of Prosen and
Žnidarič are extended by a supersymmetry calculation to arbitrary strengths of the perturbation for the case of
an unperturbed Hamiltonian taken from the Gaussian orthogonal ensemble and a purely imaginary antisym-
metric perturbation. It is found that for the exact calculation the freeze of fidelity is only slightly reduced as
compared to the linear-response approximation. This may have important consequences for the design of
quantum computers.
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I. INTRODUCTION

The concept of fidelity was originally introduced by Peres
�1� to characterize the quantum-mechanical stability of a sys-
tem against perturbations. Recently it enjoys a renewed
popularity because of its obvious relevance for quantum
computing. In the present context the works that focus on
random matrix aspects are of particular relevance. First the
paper by Gorin et al. �2� has to be mentioned, where the
Gaussian average of the decay of the fidelity amplitude was
calculated in a linear response approximation. For small per-
turbations the authors found a predominantly Gaussian de-
cay, with a crossover to exponential decay for strong pertur-
bations, in accordance with the literature �3,4�. The results of
the paper could be experimentally verified in an ultrasound
experiment �5� and in a microwave billiard �6,7�. Using su-
persymmetry techniques, the limitations of the linear re-
sponse approximation could be overcome, yielding analytic
expressions for the decay of the fidelity amplitude for the
Gaussian orthogonal �GOE� and Gaussian unitary �GUE� en-
semble. Quite surprisingly, a recovery of the fidelity was
found at the Heisenberg time, �8� which was interpreted as a
spectral analog of a Debye-Waller factor �9�. Reference �8� is
the basis for the present work.

The Gaussian decay observed for small perturbation is
caused by the diagonal part of the perturbation in the eigen-
basis of the unperturbed Hamiltonian. This was the motiva-
tion for Prosen and Žnidarič to look for perturbations with a
zero diagonal, first in classically integrable systems �10�.
Later on they extended their studies to classically chaotic
systems �11�. In linear response approximation they found a
plateau in the decay of the fidelity. Only after extraordinarily
long times the decay started again, exponentially below, and
Gaussian beyond the Heisenberg time. It remained, however,

an open question of whether this freeze of the fidelity is
reality or whether it is just an artifact of the approximation. It
was the motivation for the present work to answer this ques-
tion by extending the previous supersymmetry calculation to
the freeze situation. It will be shown that the freeze is present
also in the exact calculation. This may have important con-
sequences for quantum computing. If one succeeds in imbed-
ding the atoms representing the qubits into an environment
coupled only via an off-diagonal perturbation to the atoms,
an enhancement of the system’s stability by orders of mag-
nitude is expected.

The present results are not restricted to random matrices.
In Ref. �12� it is shown that, e.g., kicked tops with a corre-
sponding dynamics follow exactly the random matrix predic-
tions of the present paper.

II. THE LINEAR RESPONSE APPROXIMATION

The fidelity amplitude is defined as the overlap integral
of an initial wave function ��� with itself after the time
evolution due to two slightly different Hamiltonians H0 and
H�=H0+�V,

f���� = ���e2��H��e−2��H0���� , �1�

where the time � is given in units of the Heisenberg time.
Expanding the initial wave packet in terms of eigenfunctions
to H0, ���=�an��n�, Eq. �1� may be written as

f���� = �
n,m

anam
* ��n�e2��H��e−2��H0���m� . �2�

Now an average over all initial wave functions is per-
formed. In chaotic systems, in contrast to integrable ones, the
an are uncorrelated, i. e. �anam�= �1/N��nm, where N is the
number of eigenfunctions entering the sum �2�. One then
ends up with
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�f����� =
1

N
�tr�e2��H��e−2��H0��� , �3�

where the brackets denote an ensemble average. It may be
worthwhile to note that up until now all experiments study-
ing the fidelity decay measure ensemble averages. This is, in
particular, the case for the ultrasound and microwave experi-
ments mentioned in the Introduction �5–7�, but it is true as
well for all spin-echo experiments where always ensemble
averages over a large number of probe spins are observed.

Under the assumptions that �i� H0 is taken either from the
Gaussian orthogonal �GOE� or the Gaussian unitary en-
semble �GUE� with a mean level spacing of one in the band
center and �ii� that the variances of the matrix elements of V
are given by

�VijVkl� = 	�ik� jl + �il� jk �GOE� ,

�il� jk �GUE� .

 �4�

Gorin et al. �2� obtained for the fidelity amplitude in the
linear response approximation,

�f����� � 1 − �C��� , �5�

where �=4�2�2, and C��� is given by

C��� =
�2

�
+

�

2
− �

0

� �
0

t

b2,��t��dt� dt . �6�

b2,���� is the two-point form factor, and � is the universality
index, i.e., �=1 for the GOE, and �=2 for the GUE. For the
Gaussian ensembles, b2,���� is known, and C��� can be ex-
plicitly calculated �2�. The range of validity of the linear
response approximation can be somewhat extended, by ex-
ponentiating Eq. �5�,

�f����� = e−�C���. �7�

The authors argued that the errors of the approximation
should be fairly small for ��0.1 and negligible for
��0.01 �corresponding to �=0.4 and 0.004, respectively�,
which was fully confirmed by the exact calculations �8�.

The Gaussian decay for small perturbations is caused by
the diagonal part of the perturbation. This is immediately
evident from Eq. �3�: For small perturbations V can be trun-
cated to Vdiag, its diagonal part in the basis of eigenfunctions
of H0. In this regime, Eq. �3� reduces to

�f����� =
1

N
�tr e2���H0+�Vdiag��e−2��H0��

=
1

N�
n

e2���En+�Vnn��e−2��En�� =
1

N�
n

e2���Vnn��
=

1

N
�tr e2���Vdiag�� = e−��/2��2�Vdiag

2 �, �8�

where the En are the eigenenergies of H0 �4�. This suggests
to consider perturbations with vanishing diagonal matrix el-
ements in the eigenbasis of H0 �13�. In the linear response
approximation one then obtains

�f����� = e−�Cfreeze���, �9�

where Cfreeze differs from the expression �6� derived previ-
ously only by the fact that the term �2 /� is missing on the
right hand side of the equation �6�. The resulting decay of the
fidelity amplitude is extremely slow. It will be discussed later
and compared with the exact result, as obtained from the
supersymmetry calculation.

III. THE PURELY IMAGINARY ANTISYMMETRIC
PERTURBATION

To apply the supersymmetric technique of Ref. �8�,
the Hamiltonian needs to be invariant under the action
of the orthogonal/unitary group. This is not the case
for a GOE perturbation with a deleted diagonal. However, a
purely imaginary antisymmetric matrix meets with both re-
quirements, zero diagonal elements and orthogonal symme-
try. Therefore it is an ideal candidate. We consider the
Hamiltonian

H� = H0 + ��V , �10�

where H0 is taken from the GOE, i.e.,

��H0�ij�H0�kl�H0
=

N

�2 ��ik� jl + �il� jk� , �11�

and V is real antisymmetric, i.e.,

�VijVkl�V = ��ik� jl − �il� jk� . �12�

The variance of the matrix elements has been chosen to have
a mean level spacing of one for H0 and of order 1 /�N for V.
Note that in contrast to Ref. �8� the mean density of states
does not remain constant with increasing perturbation, but
decreases with increasing �. In fact, it is irrelevant in the
present context, whether a defolding to a constant mean den-
sity of states is performed or not. Such a defolding would
imply an additional factor of 1 /�1+ ����2 /N on the right
hand side of Eq. �10�, which in the final limit N→	 reduces
to one. These definitions are consistent with the normaliza-
tion used by Gorin et al. �2�. Expressing �f�����, see Eq. �3�,
in terms of its Fourier transform,

�f����� =� dE1 dE2 e2���E1−E2��R��E1,E2� , �13�

we have

R��E1,E2� 

1

N
tr� 1

E1− − H0 − ��V

1

E2+ − H0
�� , �14�

with E±=E± ��. We rewrite R��E1 ,E2� using the formula

tr
1

AB
=

1

2��n,m

�

�Jnm

�

�Kmn

det�A + J�
det�A − J�

det�B + K�
det�B − K��

J=K=0

.

�15�

In our case A=E2+−H0 is real symmetric and B=E1−−H0
− ��V is Hermitian. According to the universality classes of A
and B, we write the determinants as Gaussian integrals over
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real and complex wave functions, respectively. We obtain

��
n,m

�

�Jnm

det�A + J�
det�A − J��

J=0

= − i� d�x�d�y�d���d��*�

 �
n,m

�xnxm + ynym − �n
*�m − �m

* �n�

 e−ixTAx−iyTAy−i�†A�−i�TA�*
, �16�

where the commuting integration variables are real. We
adopt the usual convention and use Latin letters for commut-
ing, and Greek ones for anticommuting variables, respec-
tively. For B we obtain, instead,

��
n,m

�

�Kmn

det�B + K�
det�B − K��

K=0

= i� d�a�d�b�d���d��*�

�
n,m

�aman + bmbn − �m
* �n − �n

*�m�  ei�z†Bz+2�†B��,

�17�

where zi is complex, and ai and bi are its real and imaginary
part, respectively. Collecting the results, we arrive at

R��E1,E2� 

1

N
� d�a�d�b�d�x�d�y�d���d��*�d���d��*�e−��E2+�n�xn

2+yn
2+2�n

*�n�−E1−��an
2+bn

2+2�n
*�n��  �

n,m
�xnxm + ynym − �n

*�m − �n�m
* �

�aman + bmbn − �m
* �n − �m�n

*��e���n,mVnm�anbm−ambn−��n
*�m+��m

* �n��V

 �e−��n,mH0nm�xnxm+ynym−anam−bnbm+�n
*�m+�m

* �n−�n
*�m−�m

* �n��H0
. �18�

The commuting integration variables are all real. Now the
average is taken over real symmetric H0 using Eq. �11�

�¯�H0
= exp�−

N

�2Str�LZ�2� , �19�

where Z is a supermatrix given by Z=�nznzn
†, with

zn
T= �xn ,yn ,�n ,�n

* ,an ,bn ,�n ,�n
*�, and L=diag�14 ,−14� in the

advanced-retarded block notation. Z is exactly the matrix
given in Table 4.1 of Ref. �14�, denoted by VWZ in the
following. It has an orthosymplectic symmetry, i.e., in
Boson-Fermion block notation the Boson-Boson block is real
symmetric and the Fermion-Fermion block is Hermitian self-
dual. For the V average we obtain with Eq. �12�,

�¯�V = exp�− �2 Str�KT�2� . �20�

Here T=�nanan
† with an

T= �an ,bn ,�n ,�n
*�, and Str is the

supertrace in the notation of VWZ. The supermatrix K is
given by

K = �− �y 0

0 �z
� , �21�

where we used the Pauli matrices

�x = �0 1

1 0
�, �y = �0 − �

� 0
�, �z = �1 0

0 − 1
� . �22�

In K, the off-diagonal nature of the perturbation is encoded.
The subsequent steps are the same as described in �8,14�.

After transforming Eqs. �19� and �20� by means of two
Hubbard-Stratonovich transformations, the integrations over

the a ,b ,x ,y variables, and over the auxiliary variables of one
Hubbard-Stratonovich transformation can be performed,
resulting in

R��E1,E2� 

�4

4N3 � d���Str�P�RA
† P�RA�

e−��2/4N�Str �2
e��4/4N2��2 Str�K�RR�2

�Sdet��AA − E1− �RA
†

�RA �RR − E2+
��−N/2

.

�23�

Sdet denotes the superdeterminent, and P=diag�1,1 ,−1 ,
−1�. Terms vanishing in the limit N→	 have been
discarded. The matrix � has the same orthosymplectic sym-
metry as Z and reads in advanced-retarded block notation,

� = ��AA �RA
†

�RA �RR
� . �24�

Introducing the notation E1/2= Ē±E /2, and substituting �AA
and �RR by �AA+E /2 and �RR−E /2, respectively, we obtain

R��E1,E2� 

�4

4N3 � d���Str�P�RA
† P�RA�

e−��2/4N���2+E Str��AA−�RR��

e��4�2/4N2��Str�K�RR�2−E Str K�RR�

�Sdet�� − Ē��−N/2. �25�

This expression can be evaluated in the limit N→	 by a
saddle point approximation.
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IV. SADDLE POINT APPROXIMATION

The next steps are a direct repetition of the corresponding
ones in Ref. �8�. We shall adopt the notation from VWZ,
which is the main source for the following calculations. First
we diagonalize �,

� = T0
−1R−1�DRT0, �26�

where R is block diagonal and

T0 = ��1 + t12t21 �t12

− �t21 �1 + t21t12
� �27�

�see VWZ, Eqs. �5.28� and �5.29��. The integration of the
diagonal variables of � can be performed by means of the
saddle point approximation. �D at the saddle point reads as

�D = �sA 0

0 sR
� , �28�

where the advanced and retarded saddle points are given by

sA/R =
1

2
�Ē ± ��� ,

� =
2N

�
�1 − ��Ē

2N
�2

=
2N

�
� , �29�

and � is the density of states. In the following we shall re-

strict ourselves to the band center, Ē=0, where Eq. �29� re-
duces to sA/R= ± �� /N. We then have for the matrix � at the
saddle point,

� =
N

�
� ��1 + 2t12t21� 2t12

�1 + t21t12

2t21
�1 + t12t21 ��− 1 − 2t21t12�

� . �30�

The matrix R �see Eq. �26�� does not enter, since it commutes
with �D at the saddle point. We obtain

R��E1,E2� 

�4

4N3 � F�t12�d�t12�Str�P�ARP�RA�

e−��2/4N��E Str��AA−�BB�−��2�2/N�Str�K�AA�2�,

�31�

where the integral is over the elements of the matrix t12,
parametrizing the saddle-point manifold. The function
F�t12�=Sdet−1/2�1+ t12t21� is the Berezinian of the coordinate
transformation, Eq. �27�. Using Eq. �30�, the various terms
entering Eq. �31� may be written as

Str��AA − �RR� = �
4N

�
Str�t12t21� , �32�

Str�K�RR�2 = � �N

�
�2

Str�K�1 + 2t12t21��2 �33�

Str��ARP�RAP�

= �2N

�
�2

Str�t21
�1 + t12t21P  t12

�1 + t21t12P� .

�34�

We proceed further by diagonalizing the matrices t12 and t21.
This is achieved by the radial decomposition,

t12 = U1
−1MUU2, t21 = U2

−1U†MU1, �35�

with diagonal M =diag��1 ,�2 , �� , ���. The matrix U=12

� Û is a 44 block diagonal matrix, with Û�SU�2� �see
VWZ, Eq. �I.18��. The Ui �i=1,2� may be parametrized as

Ui=ViOi, where the Oi= Ôi � 12 are 44 block diagonal,

with Ôi�SO�2�. The parametrization of the Vi in terms of
anticommuting variables is postponed to Appendix A. If we,
moreover, introduce

X = M2 = diag�x,y,− z,− z� ,

x = �1
2, y = �2

2, z = �2, �36�

we can write Eqs. �32�–�34�, using Eq. �35� and Eq. �36�

Str��AA − �RR� = �
4N

�
Str X , �37�

Str�K�RR�2 = � �N

�
�2

Str�K1�1 + 2X��2, �38�

Str��ARP�RAP� = �2N

�
�2

Str��X�1 + XP1  �X�1 + XP2� ,

�39�

where

K1 = U1KU1
−1, P1 = U1PU1

−1, P2 = UU2PU2
−1U−1.

�40�

Under the transformations, Eq. �35� and Eq. �36�, the mea-
sure transforms as

d�t12� = G�X�d��U1�d��U2�d��U�d�X� . �41�

The function G has been calculated in VWZ �Eq. �K.17��.
The average in Eq. �31� is over the elements of the matrices
X ,U ,U1 ,U2. Only P2 depends on the matrix elements of U2.
It will be shown in Appendix A that U2PU2

−1 averaged over
the matrix elements of U2 is nothing but a multiple of the
four-dimensional unit matrix. Thus the U dependence can-
cels. We are then left with an average over x ,y ,z, and the
matrix elements of U1. Inserting these results into Eq. �31�,
we get

R��E1,E2� 

1

N
� F�X�G�X�d�X�d��U1�Str�X�X + 1�P1�

e−��E Str X−��/16�Str��1 + 2X�K1�2
, �42�

where we employed the definition �=4�2�2; previously
shown. The Berezinians F�X� and G�X� can be comprised in
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one measure function ��X� that was given in VWZ:

��X� =
�x − y�

�xy�x + 1��y + 1�
z�1 − z�

�z + x�2�z + y�2 . �43�

Substituting expression �42� for R��E1 ,E2� into Eq. �13�, and

introducing E= �E1−E2� /2 and Ē= �E1+E1� /2 as new inte-
gration variables, the E integration generates a delta func-

tion, whereas the Ē integration corresponds to an energy av-
erage. The result is �see Ref. �8� for details�

�f����� 

1

N
�

0

	

du�
0

	

dv�
0

1

dz ��u,v,z�d��U1���� − u − z�

Str�X�X + 1�P1�exp�−
�

16
Str��1 + 2X�K1�2� ,

�44�

with u= �x+y� /2. In addition, we shall use v= �x−y� /2 as
another new variable, and replace z by �−u everywhere,
which is admissible because of the presence of the delta
function. The integration domains of the radial variables u ,v
and z are dictated by the hyperbolic symmetry of the saddle
point manifold, i.e., we have noncompact integration do-
mains 0�x ,y�	 for the bosonic coordinates x ,y and a
compact integration domain 0�z�1 for the fermionic coor-
dinate z. For more details on this point, see VWZ. We still
have to integrate over the matrix elements of U1.

V. INTEGRATION OVER THE GRASSMANN VARIABLES

We recall that U1=V1O1. Since O1 commutes with P and
with K, the O1 integration is trivial, and we are left with the
integration over V1. The parametrization of V1 in terms of
Grassmannian variables and the calculation of the traces in
Eq. �44� is quite involved, and is postponed to the Appen-
dixes. Here we note only the results:

Str�X�X + 1�P1�

= 4v�2u + 1�B + 2�2u�u + 1� − ��2u + 1 − �� + v2�

+ 4���2u + 1 − �� + v2��A − 2ā� , �45�

and

1

8
Str��1 + 2X�K1�2 = ��2u + 1 − �� − v2 + 2�A − D���2 − v2� ,

�46�

where

A = ��* + ��*, B = ��* − ��*, D = ����* − ��*� .

�47�

and ā=��*��*. �, �*, �, �* are anticommuting variables. It
follows that

e−��/16�Str��1 + 2X�K1�2

= e−��/2����2u+1−��−v2+2�A+D���2−v2��

= �1 − ��A − D���2 − v2��e−��/2����2u+1−��−v2�. �48�

These results are inserted into Eq. �44�. The measure is given
by

d��U1� = 2� d��V1� 
 d� d�* d� d�*. �49�

Therefore only the terms proportional to ā survive the inte-
gration over the antisymmetric variables. We obtain

�f����� 

1

N
� ��u,v,z���� − u − z�e−��/2����2u+1−��−v2�

�1 + ���2 − v2�����2u + 1 − �� + v2�du dv dz ,

�50�

which is almost our final result.

VI. RESULT AND DISCUSSION

The final result is obtained by an VWZ-like integral �see
VWZ, Eq. �8.10�� and is given in the present case by

�f����� = 2�
Max�0,�−1�

�

du�
0

u v dv
��u2 − v2���u + 1�2 − v2�


�� − u��1 − � + u�

�v2 − �2�2 �1 + ���2 − v2��

���2u + 1 − �� + v2�e−��/2����2u+1−��−v2�. �51�

The constant of proportionality was fixed by the condition
f��0�=1 �see Ref. �9��. The only difference of Eq. �51� to
Ref. �9�, where a GOE perturbation was considered, is the
additional factor �1+���2−v2�� in the integrand, and a minus
sign with the v2 term in the exponent, where in the GOE case
there is a plus sign.

Figure 1 shows the fidelity decay for different perturba-
tions, as calculated from Eq. �51�, together with the result
from the exponentiated linear response approximation. For
comparison the fidelity decay for the case of a GOE pertur-
bation �8� is shown as well. We see that the linear response
approximation is able to describe the fidelity decay for quite
a long time very well. For still larger times the linear re-
sponse approximation underestimates the decay, as compared
to the exact result, but still the decay is by orders of magni-
tude slower as for a GOE perturbation.

Figure 2 shows the fidelity �f����� for three fixed values
0.5, 1.0, 1.5 of � as a function of the perturbation �. The
figure demonstrates that the freezing effect not unexpectedly
becomes less and less pronounced with increasing perturba-
tion, although the decay is always by orders of magnitude
slower than for the case of a GOE perturbation �not shown�.
It is further seen that the linear response approximation
works very well up to about half the Heisenberg time, but
underestimates the decay more and more for increasing �
values.

We thus can conclude that the fidelity freeze is not an
artifact of the linear response approximation but is also
present in the exact calculation. Due to the perfect and well
established correspondence between random matrices and
chaotic quantum systems �15–17�, this result provides an im-
portant new mechanism of preserving quantum stability.
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APPENDIX A: CALCULATION OF Str†X„X+1…P1‡

In terms of Pauli matrices X may be expressed as

X = − z1 + �X̂ 0

0 0
� , �A1�

where

X̂ = �x + z 0

0 y + z
� = �1 + v�z. �A2�

It follows that

Str�X�X + 1�P1�

= 4z�z − 1� + �1 − 2z�tr�X̂�P1�u.l.� + tr�X̂2�P1�u.l.� ,

�A3�

where it was used that Str P1=Str P=4, and where �P1�u.l.

denotes the upper left submatrix of P1. As was already men-
tioned, matrices U1 and U2 entering the calculation of P1 and
P2 �see Eq. �40�� are parametrized as

Up = VpOp �p = 1,2� �A4�

where

Op = �Ôp 0

0 1
� , �A5�

and Ô1 and Ô2 are 22 orthogonal matrices �see VWZ, Eq.
�I.13��. The matrices Vp may be parametrized as �see VWZ,
Eq. �K.26��

�Vp�±1 = 1 ± �p−1Yp +
1

2
�2�p−1�Yp

2 ±
1

2
�3�p−1�Yp

3 +
3

8
Yp

4,

�A6�

where matrices Y1 and Y2 are given by

Yp = � 0 − �p
†

�p 0
� , �A7�

where

�p = ��p �p

�p
* �p

* �, �p
† = ��p

* − �p

�p
* − �p

� �A8�

�see VWZ, Eqs. �K.23� and �K.25��. Note the convention
��*�*=−� for antisymmetric variables. In VWZ, Eq. �I.13�,
the sequence of the matrices on the right hand side of Eq.
�A4� is reversed. Both parametrizations are equivalent and

FIG. 2. Ensemble average of the fidelity amplitude �f����� for an
imaginary antisymmetric perturbation as a function of � for three
fixed values of �=0.5,1.0,1.5 �from top to bottom, solid lines�.
Again the results from the linear response approximation are shown
for comparison �dashed lines�.

FIG. 1. Ensemble average of the fidelity amplitude �f����� with
H0 taken from the GOE and a purely imaginary antisymmetric per-
turbation �solid line, calculated from Eq. �51�� for different pertur-
bation strengths �. For comparison, the result from the linear re-
sponse approximation �dashed line�, and for a GOE perturbation
�dashed-dotted line� are shown as well.
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can be transformed into each other by a straightforward
transformation of the �p ,�p variables.

We are now going to calculate P1=U1PU1
−1

=V1O1PO1
−1V1

−1. To simplify notations, we shall omit the
lower index “1” in the following. The calculation for P2
proceeds in the very same way. Since P=diag�1,1 ,−1 ,−1�
commutes with O, we are left with

P1 = VPV−1 = V�1 0

0 − 1
�V−1. �A9�

For the further calculation it is suitable to introduce the
quantities

A = ��* + ��*, B = ��* − ��*,

C = ��* + ��*, D = ����* − ��*� . �A10�

A, B, C obey the relations

A2 = 2ā, B2 = − 2ā, C2 = − 2ā, D2 = − 2ā ,

�A11�

where ā=��*��*, and

AB = AC = AD = BC = BD = CD = 0. �A12�

It follows that

�†� = − A1 − B�z − C�x, ��† = A1 . �A13�

As a direct consequence we have

Y2 = �− �†� 0

0 − ��† � = �A1 + B�z + C�x 0

0 − A1
� ,

Y3 = − AY . �A14�

It follows from Eq. �A6� that

V±1 = 1 + �1

2
−

3

8
A�Y2 ± �1 −

A

2
�Y = � w ��*

±� w̄
� ,

�A15�

where

w = �1 +
A

2
−

3

4
ā� +

B

2
�z +

C

2
�x,

� = �1 −
A

2
��, �† = �1 −

A

2
��†,

w̄ = 1 −
A

2
+

3

4
ā . �A16�

Inserting the results into Eq. �A9�, we have

P1 = ��1 − 4ā + 2A�1 + 2�B�z + C�x� 2�1 − A��†

2�1 − A�� �− 1 − 4ā + 2A�1
� .

�A17�

A corresponding expression is obtained for P2. In the av-
erage over the antisymmetric variables, only the ā terms sur-

vive, i.e., �P1�= �P2�
1, as was stated previously.
Inserting finally the upper left corner element of P1 into

Eq. �A3�, we end up with Eq. �45�.

APPENDIX B: CALCULATION OF Str†„1+2X…K1‡
2 /8

It is suitable to write

1

8
Str��1 + 2X�K1�2

=
1

16
Str��1 + 2X�,K1�2 +

1

8
Str��1 + 2X�2K1

2�

=
1

4
Str�X,K1�2 +

1

2
Str�X�X + 1�� , �B1�

where K1
2=K2=1 was used. The second term on the right

hand side is easily evaluated:

1

2
Str�X�X + 1��

=
1

2
�x�x + 1� + y�y + 1� + 2z�1 − z��

= u�u + 1� + v2 + z�1 − z� = − �2 + �2u + 1�� + v2.

�B2�

For the first term on the right hand side we need an expres-
sion for K1. Using K1=U1KU1

−1 �see Eq. �40�� and U=VO
�see Eq. �A4�� we may write

K1 = V1O1KO1
−1V1

−1 = VKV−1, �B3�

since K �see Eq. �21�� commutes with O. Using Eq. �A15�,
we obtain

K1 = �k �†

� k̄
� , �B4�

where

k = − w�yw + �†�z� ,

�† = − w�y�
† − �†�zw̄, � = − ��yw − w̄�z� ,

k̄ = − ��y�
† + w̄�zw̄ . �B5�

Since K1
2=1, we have

1

4
Str�X,K1�2 =

1

2
�Str�XK1�2 − Str X2� =

1

2
�Str�X̂k�2 − Str X̂2� ,

�B6�

where in the second step expression �A1� for X was used.
Using Eqs. �A16� and �B5�, we have

k = − �1 + A − D��y , �B7�

where �†�z�=D�y was used. Now the calculation
of the terms entering the right hand side of Eq. �B6� is
straightforward:
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1

2
Str�X̂k�2 = �1 + 2A − 2D���2 − v2� ,

1

2
Str X̂2 = �2 + v2. �B8�

Collecting the results of this section, we have

1

8
Str��1 + 2X�K1�2 = ��2u + 1 − �� − v2 + 2�A − D���2 − v2� ,

�B9�

which follows Eq. �48�.
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